here you will get the Python numpy functions with the format additionally,
mostly used python numpy functions with the example and alternate example.
Also to explain it in a better way.
#importing numpyimport numpy as np
in the example, we will { np }
np.all(element)
code Example:
a =np.array([1,2,4])
print(np.all(a))
#output
>> true
a =np.array([1,2,0])
print(np.all(a))
#output
>> false
Explanation: all function returns True. if all elements of the input array evaluate as True. if the array will have 0 it will give false.
np.any(element)
code Example:
a = np.array([1,2,0])
print(np.any(a))
#output
>> true
a = np.array[0,0,0]
print(np.any(a))
#output
>> false
Explanation: any function, returns True if any element of the input array evaluate as True. if the array will have all 0, then it will give false.
np.argmax(element)
code Example:
a = np.array([1,2,0])
print(np.argmax(a))
#output
>> 1
Explanation: argmax function, returns the indices of the maximum value along an axis.
np.argmin(element)
code Example:
a = np.array([1,2,0])
print(np.argmin(a))
#output
>> 2
Explanation: argmin function, returns the indices of the minimum value along an axis.
np.argmax(element)
code Example:
a = np.array([1,2,0])
print(np.argsort(a))
#output
>> [2,0,1]
Explanation: argsort function, returns the indices that would sort an array
np.round(element)
code Example:
a = np.array([1.0093,2.0232,0.9890])
print(np.round(a,2))
#output
>> [1.01 2.02 0.99]
Explanation: round function, round off the elements of the array to the given decimal points, in this case, it is 2.